之前在看Keras Example的时候, 发现对于NLP相关的任务使用的NN都非常浅。 没有很严谨的去数, 但是基本上都是一两层网路就结束了。 具体可以参考Keras Example 之中IMDB相关的代码。 当然, 效果也不差。 一直对这一块很奇怪。 偶然从知乎上面的一篇文章获得解答。 参考: 如何评价Word2Vec作者提出的fastText算法?深度学习是否在文本分类等简单任务上没有优势? 简要观点: 项亮: 文本分类基本还是个偏线性的问题。多层的网络相对单层的没有太多优势。但这不是说多层的没用,而是单层的…

2017年11月28日 0条评论 6939点热度 1人点赞 阅读全文

现在网上有一些预先训练好的Word2Vec模型, 比如Glove, Google-News以及我最喜欢的FastText,都有各自使用大数据训练出来的Word2Vec模型。 根据不同的业务, 也可以自己搜集语料库训练Word2Vec. 关于如何使用Keras加上预训练好的W2V模型, 具体可以参考官网教程:Using pre-trained word embeddings in a Keras model   篇幅比较长, 写得“太详细”了。 不过核心就在下面一行代码: (Example Code on …

2017年11月26日 0条评论 16369点热度 8人点赞 阅读全文

前言 从这一篇开始, 将开始记录、介绍Keras + TensorFlow组合进行图像以及文本分类。 在实战之前, 首先就是搭建我们的运行环境。 笔者在这里最推荐的还是使用docker进行部署。 在宿主机里面只需要安装cuDNN、NVIDIA-Driver安装好之后,需要TensorFlow就pull一个TensorFlow的镜像。 想要一个Caffe就去pull一个Caffe的镜像。 python2、python3 随便切换。 如果你还没有使用过docker, Google搜索“docker 入门”第一条就是最好…

2017年11月24日 0条评论 7248点热度 2人点赞 阅读全文

ES 的作用 之前存储了大约11W条数据, 作为Mac相关的知识库 不过现在应该很少用了。 index: mac-master 主要作用是作为TSDB的存在。 存储用户的反馈、点击事件等等。 index: mac-master-tsdb 原文链接:http://www.flyml.net/2017/11/23/record-an-elasticsearch-transporting/ 老版本的安装方法: https://www.digitalocean.com/community/tutorials/how-to-…

2017年11月23日 0条评论 5997点热度 0人点赞 阅读全文