论文标题: From Word Embeddings to Item Recommendation 论文地址: https://arxiv.org/pdf/1601.01356 核心思想 这一篇论文的思想相比起其他的论文来说, 思想非常简单,就是把Item 当成一句话之中的Word。 使用训练Word2Vec模型的方法来训练一个Item2Vec 这种方法我还是比较认同的, 因为需要的数据比较简单, 是实际生产之中的应用场景会多不少. 训练数据 论文之中提到的数据集太老了(2011年), 没找到. 因为论文之中提到的…

2018年03月05日 0条评论 8916点热度 0人点赞 阅读全文

论文链接: http://aclweb.org/anthology/D17-1312 这一篇论文, 主要想解决的问题是在一个新的领域, 当现有的语料不足够大的时候, 如何充分利用之前已经有的一些语料增强当前领域的词向量模型。 具体算法并不复杂, 不过感觉距离实用还是有一些距离: 首先需要原始语料,而不是原始语料训练出来的模型 因为需要得到一个词在原始语料的概率分布 还需要一个词同时在两个语料之中同时出现。 可是目前的情况是, 我们只有Google / Facebook / Stanford 等发布的大规模训练出来的…

2018年01月08日 0条评论 4197点热度 0人点赞 阅读全文

0. 引言 上周五在公司使用gensim的word2vec实验了一次“文档相似性”计算。匹配出来的结果惨不忍睹,可以用“天马行空”来形容。这就是对word2vec不了解的情况下做调包侠的下场。。。 下面是笔者对word2vec的一些初步了解与效果反思。 本文为原创。 转载需要注明出处:http://www.flyml.net/2016/11/07/word2vec-basic-understanding/ 1. 为什么学习w2v? 简单的说,我们在声音与图像领域,深度学习都取得了令人瞩目的成就,其中一个重要的原因,…

2016年11月07日 0条评论 10872点热度 0人点赞 阅读全文